Self-configuring Hybrid Evolutionary Algorithm for Multi-class Unbalanced Datasets
نویسندگان
چکیده
This paper describes a modification of the self-configuring hybrid evolutionary algorithm for solving classification problems. The algorithm implements a hybridization of Pittsburg and Michigan approaches, where Michigan part is used together with mutation operator. The rule bases use fixed fuzzy terms, and the number of rules in the rule base can change during the algorithm run. Also, the applied algorithm uses a set of heuristics to determine the weights and class labels for every fuzzy rule, using the confidence values, which are calculated using the training sample. A special initialization procedure allows getting more accurate fuzzy rule bases on the first generations. The modification changes the procedure of determining the most appropriate class number for the fuzzy rule. It uses the number of instances of different classes, as a weighting coefficient to avoid confidence values bias. Also, we apply two classification quality measures, the classical accuracy value and the average accuracy among classes. The modification, combined with different classification quality measures, allows improvement in the classification results. The self-configuring algorithm is tested on a set of unbalanced classification problems with several classes using cross-validation and a stratified sampling procedure. The test problems included image segment classification, bank client classification, phoneme recognition, classification of page contents, and satellite image classification. For one of the problems, the confusion matrixes are provided to show the increasing balance over the class accuracies. The presented method has efficiently solved the satellite images classification problem and can be applied for many real-life problems, including the problems from aerospace area.
منابع مشابه
A New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملAn Evolutionary Algorithm Based on a Hybrid Multi-Attribute Decision Making Method for the Multi-Mode Multi-Skilled Resource-constrained Project Scheduling Problem
This paper addresses the multi-mode multi-skilled resource-constrained project scheduling problem. Activities of real world projects often require more than one skill to be accomplished. Besides, in many real-world situations, the resources are multi-skilled workforces. In presence of multi-skilled resources, it is required to determine the combination of workforces assigned to each activity. H...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کامل